
Multi-agent control and intelligent sensor allocation with
Reinforcement Learning and Genetic Programming

Final Report 0001AD
Icosystem Corporation, 3 February 2003

Overview
This document describes work performed under STTR contract N00014-02-M-0266 by
Icosystem Corporation, in collaboration with MIT AI Lab staff, for the months of December,
2002 and January, 2003. This is the fourth and final report to describe our work.

In the sixth and seventh months of effort, we have performed the following tasks:

• Extended and refined the UGV evader-pursuer simulation tool in several ways:

o the dynamics of the UGVs (both types) are more accurate and better able to
handle navigation even in tight spaces;

o the World Editor and the Agent-Based model are now fully integrated: users can
modify the environment or the navigation points while the simulation is running,
if desired;

o the simulator allows selection of several run-time parameters, including the
number of pursuers and the evader strategy;

o the simulator can run in “batch” mode with variable random seed for Monte Carlo
simulations

• Hand-designed a variety of pursuer and evader strategies

• Ran Monte Carlo simulations to test the efficacy of several strategies under varying
conditions.

Design of control strategies

At the time of the previous report, both pursuers and evaders had their vehicles simulated, with
low level control and obstacle avoidance. Given a point far away, they were able to plan a path
to it and head there, using a combination of reactive strategies at lower levels (path execution
and obstacle avoidance) and deliberative algorithms at higher levels (path planning and A*
search).

Since then we have added an infrastructure for hardest part of the task, making the tactical
decision of what path to take to find and capture the evader, or to best hide or flee from the
pursuer. This task is greatly simplified by recognizing that, once a decision has been made, we
needn’t revisit it every time step. In other words, the state of the world is very similar from one
time step to the next, so the best action at any time step is mostly likely the same as it was at the
previous time step.

2. REPORT TYPE 3. DATES COVERED (From - To)

 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILABILITY STATEMENT

10. SPONSOR/MONITOR'S ACRONYM(S)

14. ABSTRACT

15. SUBJECT TERMS

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT c. THIS PAGEb. ABSTRACT

17. LIMITATION OF
ABSTRACT

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18

19b. TELEPONE NUMBER (Include area code)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

1. REPORT DATE (DD-MM-YYYY)

16. SECURITY CLASSIFICATION OF:

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Therefore, each vehicle, be it a pursuer or evader, only updates its goals when there’s a
significant change in either its state or the world. In particular, a pursuer only makes decisions
when it reaches an intersection, when it or another pursuer sees the evader, when it looses sight
of the evader, or when the evader abruptly changes direction.

This strategy can greatly speed up the simulation, which allows many more strategies to be
evaluated by evolution. It also allows the individual decisions to be more involved and time
consuming.

Early experiments revealed that these decisions depended on the topological structure of the
world. A natural way of searching this is to use a best first search, using machine learning to
discover a heuristic function to evaluate the suitability of each intersection as a possible goal.
This strategy has proven wildly successful in games such as checkers and backgammon. In fact,
the best computer backgammon player to date, TD-Gammon, was created using exactly this
strategy.

Initial experiments creating both pursuers and evaders by hand have demonstrated a variety of
possible behaviors. Many interesting and useful strategies seem to be easily represented in this
framework. Thus, we have a framework which is ready for evolution, and which is organized
such that evolution should discover many interesting behaviors.

In our early runs we found that the performance of pursuit strategies also depends heavily on the
evader strategies. For this reason we have focused more on designing various strategies for the
evader. In any event, because of the complexity of the team control, the design of pursuer
strategies will be best handled with evolutionary computing.

For this period of performance, we designed a fairly simple pursuer strategy, and we tested it
systematically against several hand-designed evader strategies. The current pursuer strategy only
relies minimally on teamwork: each pursuer sets an arbitrary “goal point” in the environment and
navigates toward it. If a pursuer sees the evader (line of sight), it will head toward it, while
notifying the other pursuers. If the evader disappears around a corner, the pursuer “remembers”
the evader’s last location for 5 seconds, and keeps heading in that direction. If after 5 seconds the
evader is still not visible, and no other pursuer sees it either, the pursuer selects a new random
point in the environment to which to navigate. When a pursuer is notified that another pursuer
has seen the evader, it will head toward the location where the evader was seen.

Before reporting some simulation results, we turn to a detailed description of the evader strategy.

Evader strategies

We have designed and tested several evader strategies. We could group the strategies into two
classes: rule-based strategies and reactive strategies. In all cases we decided to assume that the
evader can only see pursuers line-of-sight, though its speed is higher than the speed of the
pursuers. We felt this is a more faithful representation of a real situation in which an evader is
trying to escape within an urban environment.

By rule-based strategy we refer to a strategy in which the evader follows a series of if-then rules
whenever it reaches a waypoint or it sees a new pursuer. In contrast, a reactive strategy is one in
which the evader treats various factors in the environment, including the presence of pursuers, as

analog input signals. The moment-by-moment decision of where to go is derived from a
continuous, mathematical formulation.

We found that, in general, the reactive rules were easier to design. Most rule-based strategies we
designed seemed to work well in some cases, but invariably failed miserably under other
conditions. In contrast, the reactive rules tend to react more reliably across a wide range of
conditions. Furthermore, the use of numeric equations lends itself to running Monte Carlo
simulations, and will eventually simplify the use evolutionary computing. In this section we
describe in detail the reactive rule that seemed most robust and generally successful.

In our strategy, the evader employs simple reactive behavior with a small degree of planning. Its
reactivity stems from the fact that it only possesses local information about its environment, a
constraint that is meant to reflect the real-world constraint on robots. Specifically, the evader
only knows about pursuers and navigation points that it can see, and has a very limited short-
term memory about those it has seen previously. The evader’s goal is to constantly seek out
escape routes, and to flee from any pursuers it detects. Like pursuers, it navigates by means of
navigation points, whose connections contain implicit structural information about the
environment, and only reevaluates its target direction when it approaches an intersection (a
navigation point) or is being chased by a pursuer.

The evader possesses a simple representation of the world. At each moment it can (but does not
necessarily) choose from two or more directions, in which direction is loosely defined as a
heading corresponding to a unique path or hallway to explore. When the evader is near a
navigation point, the directions correspond to the neighbors of that point in the navigation graph.
When the evader is on a link between points, there are always two directions, pointing towards
the respective endpoints. For instance, the screenshot in Figure 1 shows the evader on a link
between navigation points 21 and 22.

The evader decides where to go by calculating a attractiveness for each direction and following
the one with the greatest value. The attractiveness of a direction is expressed as the sum of the
attractiveness of every branch in that direction, where a branch is a visible navigation point
containing at least one neighbor that is not visible. Branches are considered desirable because
they offer possible escape routes. The attractiveness of a branch is based on several
multiplicative factors: an opportunity factor, a distance factor, a pursuer factor, and an angle
factor.

The first of these, the opportunity factor, is proportional to the number of links connecting that
navigation point to unseen neighbors, discounting those with a pursuer visibly on them. The idea
is that the more points a branch leads to, the more opportunities there are to escape. The next
three factors are negative, in the sense that they discount the opportunity offered by a branch due
to its inherent danger. As such, they reduce the attractiveness of a branch.

To explain the distance factor, several quantities must be explained: d denotes the Euclidean
distance to the branch, t denotes the time necessary to reach the branch, and s denotes speed.
The subscript e indicates the given variable pertains to the evader and p to the nearest pursuer to
the branch. The distance factor is then given by the expression α / (de + α), in which α is a
semi-saturation constant, representing the distance greater than which a branch becomes “too
far”. This function begins at 1 when de = 0 and decays to 0 geometrically, reaching .5 when de =
α, and is particularly sensitive to differences in distance less than α. The distance factor ensures
that nearby branches are preferred to distant ones.

Figure 1: Screenshot of the simulator, showing three pursuers (blue) and one evader (red)
navigating a bounded urban environment.

As with the distance factor, the pursuer factor is also a function of distance, but in this case it is
relative to the nearest pursuer’s distance. First, we define the quantity ∆d = [dp - tbsp]+, which
estimates how close the pursuer will be to the branch point by the time the evader reaches it.
Negative values imply the pursuer will reach there first, and are mapped to 0. The factor itself is
then given by ∆d / (β + ∆d), which is similar to the previous factor except that instead of
beginning at 1 and decaying to 0, it begins at 0 and approaches 1. This time the function reaches
.5 at β , a semi-saturation constant representing at what length a lead over the pursuer becomes
“safe”.

The final factor is the angle factor, which was introduced specifically to address the following
loop-hole in the pursuer factor: If the evader is in the same hallway as a pursuer and is
considering a branch far enough behind the pursuer, it will ignore the fact that even though it
would theoretically reach the branch first, it would have to go through the pursuer in order to do
it. Therefore, we define θ to be the (smaller) angle between the vectors pointing from the
branch to the pursuer and the branch to the evader and let the angle factor equal θ / (γ + θ),
where γ is a where angles become “safe”.

As stated before, the four attractiveness factors are multiplicative, so if any of them become very
small the entire attractiveness does as well. In a sense, each is a link in a chain: A branch with a
pursuer near it becomes invalidated despite its proximity and number of escape routes, while a
distant branch might be invalidated despite appearing safe and offering a similar number of
routes. In addition to the attractiveness factors, however, some simple special-case reasoning is

used to evaluate branches. For instance, if the pursuer factor of the first branch in a direction is
0, indicating it is too dangerous, the rest of the branches are assigned a value of 0, because that
initial branch is a necessary waypoint to reach them. Also, the fact that the evader does not re-
evaluate its goal while on an edge between navigation points unless being actively pursued,
implicitly biases it against the direction it came from; without this “inertia”, it would typically
hover between points at the location where their distance and opportunity factors balance out.

Simulation results

We have run hundreds of simulations under various conditions to arrive at the particular evader
strategy that we described. In this section we show some quantitative results obtained with this
strategy, and we compare it to the performance of an evader that moves along a random
succession of points.

For all simulation results below, we used the simulated environment shown in Figure 1. At each
condition we ran the simulation ten times with ten different random seeds, and calculated the
average across these ten runs. Our goal was to show how the performance can be quantified, and
how certain key parameters in the simulation affect the performance.

As a measure of performance, we chose the amount of time that it takes for the pursuers to catch
the evader (lower times being better for the pursuers). We then varied three different aspects of
the simulation: first, we tested the performance as a function of the number of pursuers (3, 5, 7 or
10); second, we varied the speed of the evader (1.1, 1.5 or 1.9 times the speed of the pursuers);
finally, we tested the reactive strategy and the random strategy. Hence the results we show below
are based on a matrix of 24 different conditions (all possible combinations of the above), each

run at least 10 times.

Figure 2: Performance of the random (left) and reactive (right) strategies as a function of the
number of pursuers, and the relative speed of the evader. Performance is expressed as the time it
takes to capture the evader.

Several points are evident from these simulations. First, and not surprisingly, in both cases
(random or reactive strategies) the performance improves with the size of the blue team. What is

Random Evader Strategy

0

50

100

150

200

250

300

3 5 7 10

of Pursuers

T
im

e
to

 c
ap

tu
re

1.1

1.5

1.9

Reactive Evader Strategy

0

200

400

600

800

1000

1200

3 5 7 10

of Pursuers

T
im

e
to

 c
ap

tu
re

1.1

1.5

1.9

Comparing Evader Strategies

0

100

200

300

400

500

600

700

800

900

3 5 7 10

of Pursuers

T
im

e
to

 c
ap

tu
re

Reactive

Random

more interesting is that the improvement is not linear. This suggests that it should be possible to
identify optimal strategies for allocation of UGVs based on mission parameters.

Second, and also fairly unsurprising, is the observation that in general the slower evaders are
easier to catch. A less intuitive result is that with larger teams, the speed of the evader becomes
less relevant. This, however, is due in large part to the fact that the environment is bounded: once
the density of the pursuers becomes high, the evader simply has very few places to run away.

What seems impressive is that even a fairly simple-minded reactive evader strategy makes the
pursuit task much more complicated. To emphasize the difference in time-to-capture between
random and reactive, we reproduce in Figure 3 the two curves for when the evader has a speed of
1.5 times the speed of the pursuer.

Figure 3: Comparison of the random and reactive strategies under identical conditions.

 It is clear from this figure that the evader is much harder to catch: with the smallest blue team (3
pursuers), the evader is nearly eight times as hard to catch. Notice also that, because of the near
lack of coordination between pursuers, the improvement resulting from larger teams is roughly
linear: for instance, the 5-pursuer team takes almost exactly twice as long to capture the evader
as a 10-pursuer team. We expect that a more powerful pursuer strategy would show a more
dramatic improvement as the team size increases.

Future work

At this point we have completed the ground work for the project. The next step will be to use the
software in conjunction with evolutionary algorithms to design more intelligent pursuer
strategies. Several comments are in order.

First, particular attention must be paid to the nature of the rules and the representation used by
the UGVs. For instance, the evader reactive rule could easily be improved by evolving some of
the numerical factors that control the “attractiveness” equation. However, the current
representation does not account for things such as memory of past locations. In the case of

pursuers, basic strategies will need to account for things such as a prediction of where the evader
is heading, even when it is temporarily out of sight.

Second, it would be useful to derive a metric that describes the complexity of the environment. If
we changed the environment dramatically, even if it was roughly the same size, the results might
be quite different. An algorithm that automatically generates environments of a given size and
complexity would be very useful.

Third, this problem lends itself very well to the application of co-evolution. Co-evolution refers
to the process of allowing more than one type of “agent” to evolve. In this case we could co-
evolve evader and pursuer strategies, with the aim of devising more sophisticated strategies than
if we evolved each independently of the other. In addition, it should be possible to let the
environment itself evolve: with a simple extension to our tool, we could devise an automatic
environment generator that creates “legal” environments (that is, environments with no dead
ends or unreachable places) of arbitrary complexity. The complexity of the environment could
then evolve simultaneously with, for example, the pursuer strategy. This should result in pursuer
strategies that can work robustly under a variety of conditions.

Fourth, this problem could also become a testbed for interactive evolution. This refers to a class
of evolutionary methods in which humans are involved in the evolutionary process. In our case,
we would like to transform the simulator into a Java applet, so that it could be run from any
browser. Furthermore, we would allow users to “play” either as the pursuers or as the evader. In
either case, their goal would be to beat the game: for instance, as pursuers they may have to catch
the evader within a certain amount of time, and conversely as evaders. The data collected from
the on-line playing would then be used off-line to evaluate the fitness of different computer
strategies. This is a powerful way to generate large amounts of data in a realistic setting. A
member of Icosystem’s staff (Dr. Pablo Funes) has prior experience with this type of on-line
evolution: he created an applet in which players tried to beat the computer at a simple version of
the old video game Tron. His results were quite good, and we expect that the approach would be
quite successful for our evader-pursuer simulation.

Finally, our ultimate goal would be to transfer the results obtained in simulations to a team of
real robots. This would require some additional detail in the sensors and dynamics of individual
agents, though we expect that the level at which we are modeling is sufficiently high that most
results should be directly applicable.

	Field 1: 03-02-2003
	Field 2: Final Report
	Field 3: 01-07-2002 to 31-01-2003
	Field 4: Multi-agent Control and Intelligent Sensor Allocation with Reinforcement Learning and Genetic Programming
	Field 5a: N00014-02-M-0266
	Field 5b:
	6: Gaudiano, Paolo
	7: Icosystem Corporation10 Fawcett StreetCambridge, MA 02128
	8: 0001AD
	9: Office of Naval ResearchBallston Tower One800 North Quincy StreetArlington, VA 22217-566-
	10: ONR
	11: 0001AD
	12: Approved for public release
	13:
	14: This project investigated the use of decentralized strategies for control of UAV and UGV swarms. During the first few months we developed an agent-based model of UAVs searching for targets in a pre-determined search area. We tested a variety of control and navigation strategies, including some based on biological principles. Subsequently we develop a second simulator, focusing on the problem of a team of pursuers trying to capture an evader in a 2-D urban environment. The simulator included control strategies for the evader and the pursuers, as well as an interactive world editor for creation of arbitrary urban environments. We used this simulator to run Monte Carlo simulations, obtaining some preliminary statistics on performance of the evader and pursuerstrategies.
	15: Agent-based modeling, pursuer-evader, decentralized control
	16a: U
	16b: U
	16c: U
	17: UU
	18: 7
	19: Paolo Gaudiano
	19b: 671-520-1070
	5c:
	5d:
	5e:
	5f:

